近年来,随着计算机技术和体视学的发展,图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。
由于金属材料中的显徽组织和非金属夹杂物等并非均匀分布,因此任何一个参数的测定都不能只靠人眼在显微镜下测定一个或几个视场来确定,需用统计的方法对足够多的视场进行大量的统计工作,才能保证测量结果的可靠性。图像分析仪以电子光学和电子计算机技术代替人眼观察及统计计算,可以迅速而准确地进行有统计意义的测定及数据处理,同时具有精度高、重现性好,避免了人为因素对金相评定结果的影响等特点,而且操作简便,可直接打印测量报告,目前已成为定量金相分析中不可缺少的手段。
一、图像分析仪的系统由金相显微镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。
为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、 y为图像上像素点的坐标,j则表示其灰度值。
图像分析仪通常都具有下列基本图像处理、分析功能:
*图像采集。
*图像增强和处理:包括阴影校正,伪彩色处理,灰度变换,平滑、锐化;图像编辑等。
*图像分割。
*二值图像处理:包括形态学处理(腐蚀、膨胀、骨胳化等),二值图像的算术运算、联接、自动修补等。
*测量:包括特征物统计,对其周长、面积、X/Y投影、轴长、取向角等参数进行统计测量。
*数据输出。
二、图像分析仪在金相分析中的应用
1、晶粒度测定 测量晶粒度是金相检验工作中经常进行的检验项目。传统的方法是参照有关标准(GB6394-2002)中的标准图片,采用与标准图片相比较的方法评定出晶粒度级别,此方法简便、速度快,但主观上的误差也比较大。若采用GB6394中规定的另外两种方法,即面积法和截点法(仲裁方法),虽然可获得准确的测量结果,但这两种方法使用起来很不方便,其繁琐程度令人望而生畏。如果使用图像分析仪采用截点法进行晶粒度测定,则可以直接而迅速地求出晶粒度级别。
2、测定显徽组织的含量 定量地测定金属材料中的显微组织的百分比等参数,并研究其对机械性能的影响是图像分析仪在金相分析中的主要用途之一。例如:测定灰铸铁、球铁、铸钢及低碳钢中的铁素体和珠光体的百分比;双相钢中的马氏体与铁素体的百分比;渗碳淬火硬化层和奥贝球铁中的残余奥氏体含量;高磷闸瓦中的磷共晶含量;铸造铝合金中的共晶硅含量,抱轴瓦白合金中的beta相含量等。使用图像分析仪的基本功能很方便地完成这些工作。若对某种材料的不同基体组织进行定量金相分析,并与其机械性能对照,可深入研究显微组织与机械性能之间的定量对应关系。
3、测定镀层厚度及脱碳层、渗碳层深度
镀层厚度测定:由于镀层下基体材料表面粗糙度或电镀工艺的影响,使镀层存在着厚薄不均的现象,为解决因厚薄不均而产生的测量误差,图像分析仪在测量镀层时,首先在显示镀层截面形貌的屏幕上划许多条相互平行且垂直于镀层表面、并横贯镀层的直线,这样每一条直线均能测出一镀层厚度数据,然后将这些数据进行处理,便得到镀层的平均厚度、很大厚度、很小厚度等参数。若被测物是非常细小的金属丝,其圆周均有镀层,则取其横截面图像,从它的圆心出发呈不同角度沿径向划许多直线,同样可测得。
测定脱碳层及渗碳层深度:首先测定基体组织的铁素体含量,然后在屏幕上划一条平行于表面并可移动的直线,计算通过该直线的铁素体含量,随着直线向心部移动,当找到与基体组织中铁素体含量相符的区域时,该直线距表面的距离即为脱碳层或渗碳层深度。
4、测定非金属夹杂物 图像分析仪用于分析非金属夹杂物,主要在两方面:其一为测定非金属夹杂物的数量、形态、尺寸、分布等参数,研究夹杂物与机械性能(特别是疲劳性能)之间的定量关系;其二是根据GB10561-89标准评定钢中非金属夹杂物级别。
5、计算球墨铸铁中石墨的球化率 球墨铸铁中石墨的球化率对其机械性能影响较大。因此,评定石墨球化率是金相检验中的一个重要项目。通常采用比较法评定,计算法则用于仲裁,GB9441标准中规定在计算球化率之前,须先求得视场中每一颗石墨的单颗石墨面积率(石墨实际面积与其很小外接圆面积之比),然后换算成每颗石墨的形状系数,再按标准中的公式计算该视场的球化率。
6、断口分形研究
Mand1brot等人于1984年将分形几何应用于研究材料的冲击断口,发现马氏体时效钢的冲击功随其断口的分形维数Df值增加而呈线性减少。此后,分形几何便进入材料的研究领域。
上一篇:直读光谱仪使用时
下一篇:不可错过的SEM学习